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For the first time, the structural, elastic and electronic properties of the scandium-based boride anti-
perovskites SnBSc3 and PbBSc3 have been investigated using a first-principles pseudo-potential plane-
wave method within the generalized gradient approximation and the local density approximation. The
equilibrium lattice constants, bulk moduli and their pressure derivatives, elastic constants, elastic wave
velocities, electronic band structures, densities of states and bonding nature are calculated for the single-
crystals SnBSc3 and PbBSc3. Pressure dependence of the elastic properties is studied up to 50 GPa. From the
anisotropic elastic constants, we have estimated the isotropic elastic parameters and related properties,
namely the shear modulus, Young’s modulus, Poisson’s ratio, Lamé’s constants, sound velocities and
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. Introduction

The anti-perovskite carbides, nitrides and borides have a wide
ange of interesting physical and chemical properties, which can
e very different depending on the composition [1–3]. The MC(Mn,
e)3 compounds with M = Al, Ga, In, Ge and d metals, and some
elated nitrides (e.g., GaNMn3 and SnNFe3) are magnets revealing
erromagnetic, antiferromagnetic, or even more complex types of

agnetic ordering and undergoing temperature-driven magnetic
hase transition [4–10]. The anti-perovskite nitrides and carbides
ave received much attention since the discovery of the supercon-
ucting properties in MgCNi3 [11]. Intermetallic anti-perovskites
losely related to MgCNi3 are therefore subjected to investigations
or both the search for new superconductors and the pursuit of a

etter understanding of the interplay between superconductivity
nd magnetism. Boron-containing anti-perovskites have been the
ubject of many experimental and theoretical research work in the
ast years [1,3,12–26]. Holleck [27] synthesized some cubic anti-

∗ Corresponding author at: Laboratory for Developing New Materials and their
haracterization, Department of Physics, Faculty of Science, University of Setif,
9000 Setif, Algeria.

E-mail address: a bouhemadou@yahoo.fr (A. Bouhemadou).

925-8388/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2010.05.132
perovskite borides Sc-based ABSc3, where A = Sn, Pb, In and Tl. To
the best of the authors’ knowledge, no information currently exists
on the physical properties of ABSc3 compounds, such as elastic
and electronic properties. It was suggested that boron-containing
anti-perovskites may be good candidates for some technological
applications. So, it is timely to investigate some of the not studied
physical properties of these materials.

First-principles calculations offer one of the most powerful tools
for carrying out theoretical studies of an important number of
physical and chemical properties of the condensed matter with
great accuracy. It is now possible to explain and predict proper-
ties of solids which were previously inaccessible to experiments.
Therefore, we think that it is worthwhile to perform first-principles
calculations for the structural, elastic and electronic properties of
the SnBSc3 and PbBSc3 compounds using the ultra-soft pseudo-
potential plane-wave (PP-PW) method in the framework of the
density functional theory (DFT) within the generalized gradient
approximation (GGA) in order to provide reference data for the the-
orists and experimentalists for future theoretical and experimental

work on this compounds.

This paper is organized as follows. In Section 2, we briefly
describe the computational techniques used in this study. The most
relevant results obtained for the structural, elastic and electronic
properties for the SnBSc3 and PbBSc3 compounds are presented

dx.doi.org/10.1016/j.jallcom.2010.05.132
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:a_bouhemadou@yahoo.fr
dx.doi.org/10.1016/j.jallcom.2010.05.132
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Table 1
Calculated lattice constant a0 (in Å), bulk modulus B0 (in GPa) and its pressure deriva-
tive B′ for SnBSc3 and PbBSc3 compounds; compared with the available experimental
data.

a0 B0 B′

SnBSc3

GGA 4.6145 89.24 3.63
LDA 4.5394 96.24 3.52
Expt. [17] 4.5712

PbBSc3

GGA 4.6357 85.64 3.75
LDA 4.5757 92.07 3.72
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with a minor contribution of the Sn-5s (Pb-6s) states. The upper part
of the valence bands (third peak), that lies from −4.8 eV up to Fermi
level, is essentially dominated by Sn-5p (Pb-6p), B-2p and Sc-3d
states with small contribution from Sc-5p (Pb-6p) states. The Sn-5p
(Pb-6p) states have nearly the same band width as those of B-2p
Expt. [17] 4.622

nd discussed in Section 3. Concluding remarks are given in Section
.

. Computational method

Our calculations are performed using CASTEP code [28] (Cambridge Serial Total
nergy Package), which is an implementation of the pseudo-potential plane-wave
ethod based on the density functional theory (DFT). Interactions of electrons with

on cores were represented by the Vanderbilt-type ultra-soft pseudo-potentials [29]
or Sn, Pb, B, and Sc atoms. The electronic exchange–correlation interactions are
reated within the recently developed Wu–Cohen generalized gradient approxima-
ion (GGA-WC) [30,31] and the local density approximation (LDA), developed by
eperley and Alder, and parameterized by Perdew and Zunger [32,33]. The cut-
ff energy for the plane-wave expansion is taken to be 400 eV in all the cases.
n 8 × 8 × 8 Monkhorst–Pack mesh [34] is used for the Brillouin-zone integra-

ions.
The structural parameters of SnBSc3 and PbBSc3 are determined using the

royden–Fletcher–Goldfarb–Shenno (BFGS) minimization technique [35]; which
rovides a fast way of finding the lowest energy structure. The tolerance for geom-
try optimization is set as the difference of total energy within 5 × 10−7 eV atom−1,
aximum ionic Hellmann–Feynman force within 0.01 eV Å−1 and maximum stress
ithin 0.02 eV Å−3.

The elastic constants are determined from first-principles calculations by apply-
ng a set of given homogeneous deformations with a finite value and calculating
he resulting stress with respect to optimizing the internal atomic freedoms
36]. The criteria for convergences of optimization on atomic internal freedoms
re selected as the difference of total energy within 1 × 10−6 eV atom−1, ionic
ellmann–Feynman force within 0.002 eV Å−1 and maximum ionic displacement
ithin 1 × 10−4 Å. A cubic crystal has three different symmetry elements (C11,

12 and C44). One strain pattern, with non-zero first and fourth components,
ives stresses related to all three independent elastic constants for the cubic
ystem. Three positive and three negative amplitudes are used for each strain
omponent with the maximum value of 0.5%, and then the elastic stiffness coef-
cients were determined from a linear fit of the calculated stress as a function of
train.

. Results and discussion

.1. Structural properties

The equilibrium lattice constants (a0), as obtained from the
ero-pressure geometry optimization using both GGA and LDA, are
resented in Table 1. The calculated lattice constants are in excel-

ent agreement with the available experimental data. The lattice
onstants calculated using the GGA are higher than the measured
nes by only 0.95% and 0.30% for SnBSc3 and PbBSc3, respectively.
he LDA approximation underestimates the lattice constants by
nly 0.70% and 1.0% for SnBSc3 and PbBSc3, respectively. The bulk
oduli (B0) and their pressure derivatives (B′) are calculated by fit-

ing the pressure–volume data to a third-order Birch–Murnaghan
quation of state (EOS) [37] (Fig. 1). We notice here the absence

f theoretical and experimental data for the bulk modulus and its
ressure derivative in the literature for these two compounds. The
alculated bulk modulus value of SnBSc3 is slightly higher than that
f PbBSc3.
Fig. 1. Calculated pressure–volume relations for the SnBSc3 and PbBSc3 compounds.
V0 is the equilibrium volume. The solid lines are given by the Birch–Murnaghan
equation of state with the parameters listed in Table 1.

3.2. Electronic properties

3.2.1. Band structure and density of states
The calculated electronic energy band structures for SnBSc3

and PbBSc3 compounds along the high-symmetry directions in the
Brillouin-zone, using the GGA, are shown in Fig. 2. The two studied
compounds have nearly similar feature of the electronic band struc-
ture and both of them exhibit a metallic character; the valence and
conduction bands overlap considerably and there is no band gap at
the Fermi level.

The total density of states (TDOS) and atomic site projected local
density of states (PDOS) for SnBSc3 and PbBSc3 are depicted in Fig. 3.
The overall shape of the TDOS of SnBSc3 is approximately similar to
that of PbBSc3. In both compounds, the valence bands characterized
by the existence of three separated peaks. The first one is located
between −9.0 eV and −6.5 eV (−10.0 eV and −7.5 eV) for SnBSc3
(PbBSc3), and it originates from Sn-5s (Pb-6s) states. The second
peak is situated between −6.4 eV and −4.4 eV (−6.8 eV and −4.4 eV)
for SnBSc3 (PbBSc3), and it derives essentially from the B-2s states
Fig. 2. Band structures along the principal high-symmetry directions in the
Brillouin-zone for the SnBSc3 and PbBSc3 compounds.
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and PDOS, respectively) for the SnBSc3 and PbBSc3 compounds.

a
i
F
m
b
s
s
t
i

3

c
c
o
t
c
t
v

a
o
v
h
a
i
a

P

w
u
t
i
P
p
a
t
o
s

Fig. 3. Calculated total and partial densities of state (TDOS

nd Sc-3d, revealing a strong hybridization in this bonding region;
ndicating a covalent bonding in the studied compounds. At the
ermi level, the density of states is mainly from Sc-3d states with
inor contribution of B-2p states. The bottom of the conduction

and is dominated essentially by Sc-3d states. The total density of
tate at the Fermi level N(EF) is found to be equal to 1.24 and 1.16
tates/eV/unit-cell for SnBSc3 and PbBSc3, respectively. Therefore,
he electrical conductivity in SnBSc3 would be slightly higher than
n PbBSc3.

.2.2. Mulliken charge population analysis
Table 2 lists the orbital and total charges and the transferred

harge of Sn, Pb, B and Sc species. In the two compounds the
harge transfers from Sc atom to B and Sn/Pb atoms. For the case
f SnBSc3, the transferred charge from Sc to B and Sn are equal
o 0.83e and 0.84e, respectively, while for PbBSc3, the transferred
harge from Sc to B and Pb are equal to 0.86e and 0.49e, respec-
ively. The obtained transferred charge values suggest an effective
alence state of Sn−0.83B−0.84(Sc0.56)3 and Pb−0.49B−0.86(Sc0.45)3.

To provide an objective criterion for bonding nature between
toms, the overlap population may be used to assess the covalent
r ionic nature of a bond. Positive and negative bond populations’
alues indicate bonding and anti-bonding states, respectively. A
igh value of the bond population indicates a covalent bond, while
low value indicates an ionic interaction [38]. The population ion-

city can be calculated from the definition of ionicity scale of He et
l. [39] as

i = 1 − exp
(

−PC − P

P

)
(1)

here P is the overlap population of a bond and PC is the bond pop-
lation for purely covalent bond (here we assume a PC value equal
o 1 as a reperesentative of a purely covalent bond). A population
onicity value Pi equal to 0 indicates a pure covalent bond, while
i equal to 1 indicates a purely ionic bond. Length, population and

opulation ionicity of the Sn–Sc, Pb–Sc and B–Sc bonds for SnBSc3
nd PbBSc3 are given in Table 2. From Table 2, it is clear that, in the
wo compounds, the B–Sc, the shortest bond, shows a high level
f covalency and a low level of ionicity. The Pb–Sc bond in PbBSc3
hows almost a complete ionicity (Pi ≈ 1).
Fig. 4. Valence charge density distribution maps in the (1 1 0) plane for the SnBSc3

and PbBSc3 compounds.

In order to further explore the bonding characteristics in SnBSc3
and PbBSc3, charge density distribution maps in the (1 1 0) plane
for these two compounds are plotted and shown in Fig. 4. The fig-
ure reveals a sharing of charge between Sc and B due to the Sc-d
and B-p hybridization; thus, there is a covalent bonding between
Sc and B. The near-spherical charge distribution around Sn site in
the two compounds indicates that the bonding between Pb and
Sc and between Sn and Sc are mainly ionic. So there is a bonding
anisotropy in the cubic SnBSc3 and PbBSc3 compounds. The bond-
ing character in SnBSc3 and PbBSc3 may be described as a mixture
of covalent–ionic and, due to the d resonance in the vicinity of the
Fermi level, metallic.

3.3. Elastic properties

3.3.1. Elastic constants and elastic wave velocities for the
single-crystals SnBSc3 and PbBSc3

The calculated elastic constants for SnBSc3 and PbBSc3, within
the LDA and the GGA, are given in Table 3. As we have already men-
tioned, we are not aware of any experimental or theoretical data
for the elastic constants of these two compounds. From Table 3,
one can remark that the elastic constants values obtained using the
LDA method are higher than those obtained from the GGA method;
this can be explained by the fact that the LDA underestimates the

lattice constants values compared to the GGA. The unidirectional
elastic constant C11 values for SnBSc3 and PbBSc3 are about 70%
higher than C44 values, so these compounds present a relatively
weaker resistance to the pure shear deformations. The elastic con-
stants Cij and the bulk modulus values of SnBSc3 are slightly higher
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Table 2
Orbital, total and transferred charges of Sn, Pb, B, and Sc atoms, bond length, bond population and population ionicity for SnBSc3 and PbBSc3 compounds, using the GGA-WC
method.

s (e) p (e) d (e) Total (e) Charge (e) Bond Bond length (Å) Bond populations, P Population ionicity, Pi

SnBSc3

B 1.21 2.62 0.00 3.83 −0.83 B–Sc 2.307 0.81 0.209
Sc 2.17 6.62 1.65 10.44 0.56 Sn–Sc 3.263 0.54 0.573
Sn 1.90 2.94 0.00 4.84 −0.84

PbBSc3

B 1.21 2.65 0.00 3.86 −0.86 B–Sc 2.318 0.99 0.010
Sc 2.23 6.68 1.64 10.55 0.45 Sc–Pb 3.278 0.00 ≈1
Pb 1.53 2.92 10.04 14.49 −0.49

Table 3
Calculated single-crystals elastic constants (C11, C12, C44), polycrystalline elastic constants (bulk modulus B, shear moduli G, Young’s modulus E, Poisson’s ratio � and Lamé’s
constant �), Every’s anisotropy constant AE and Zener’s anisotropy constant AZ, for SnBSc3 and PbBSc3 compounds. All constants are in GPa unit except �, AE and AZ which
are dimensionless.

C11 C12 C44 B G E v AE AZ �

SnBSc3

GGA 205.7 28.6 63.5 87.7 72.6 170.6 0.176 0.35 0.72 39.3
LDA 224.2 32.0 65.8 96.1 76.6 181.5 0.185 0.38 0.68 45.0
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propagation direction, � is the density of material, u is the wave
polarization and � is the wave velocity. The solutions of this
equation are of two types: a longitudinal wave with polariza-
tion parallel to the direction of propagation (�L) and two shear
waves (�T1 and �T2) with polarization perpendicular to n. The
PbBSc3

GGA 197.1 28.0 61.5 84.3
LDA 211.0 30.8 64.1 90.9

han those of PbBSc3; hence, SnBSc3 is slightly harder than PbBSc3.
he consistence between the EOS and the elastic properties can
e shown by comparing the bulk modulus value estimated from
he EOS-fitting with that estimated from the calculated elastic con-
tants Cij (B = C11 + 2C12)/3. The deviation between the two values
f B are only about 1.76% (0.17%) and 1.53% (1.29%) for SnBSc3
nd PbBSc3, respectively, using the GGA (LDA). This might be an
stimate of the reliability and accuracy of the predicted elastic
onstants for the SnBSc3 and PbBSc3 compounds.

The anisotropic behaviour of a cubic crystal can be measured by
he parameter AE introduced by Every [40] or Zener’s ratio AZ [41].
hese two parameters are defined as

E = C11 − C12 − 2C44

C11 − C44
(2)

Z = 2C44

(C11 − C12)
(3)

For an isotropic crystal C11 − C12 = 2C44, so AE = 0 and AZ = 1. Val-
es of AE /= 0 and AZ /= 1, indicate anisotropy. If AZ < 1, the crystal

s stiffest along 〈1 0 0〉 cube axes, and when AZ > 1 it is stiffest along
he 〈1 1 1〉 body diagonals [42]. The calculated Every’s parameter AE
nd Zener’s parameter AZ for SnBSc3 and PbBSc3 using the GGA and
he LDA are given in Table 3. We have found that AE /= 0, AZ /= 1 and
Z < 1 for the two materials, hence SnBSc3 and PbBSc3 are elastically
nisotropic and they are stiffest along 〈1 0 0〉 directions.

The elastic behaviour of SnBSc3 and PbBSc3 under pressure
ffect is investigated for pressure up to 50 GPa. Elastic constants
ersus pressure are illustrated in Fig. 5. A quadratic pressure
ependence of the elastic constants is observed for all con-
tants in the two compounds. All elastic constants increase
hen the pressure increases. C11 is more sensitive to the

hange of pressure compared to C12 and C44. C44 increases
lightly when the pressure increases. The first- and second-
rder pressure derivatives of the elastic constants, which present
he rate of change as function of pressure, are presented
n Table 4.
The elastic constants C11, C12 and C44 are positive over the con-
idered range of pressure and they satisfy the mechanical stability
riteria proposed by Born [43]

C11 + 2C12 + P) > 0; (C44 − P) > 0; (C11 − C12 − 2P) > 0 (4)
164.3 0.175 0.34 0.73 37.7
173.7 0.182 0.35 0.71 41.9

Hence, the cubic structure of SnBSc3 and PbBSc3 is mechanically
stable.

Using the calculated elastic constants Cij, one can compute
the elastic wave velocities in different directions. These param-
eters are given by the resolution of the Christoffel equation
[44]

(Cijkl · nj · nk − ��2ıil)ul = 0 (5)

Cijkl is the single-crystal elastic constant tensor, n is the wave
Fig. 5. Calculated pressure dependence of the elastic constants (C11, C12 and C44)
and isotropic elastic constants (bulk modulus B, shear modulus G, Young’s modulus
and Lamé’s coefficient �) for the SnBSc3 and PbBSc3 compounds. The solid lines are
least-squares second-order polynomial fits of the data points.
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Table 4
The calculated first- (˛ in GPa−1) and second-order (ˇ in 10−2 GPa−2) pressure coefficients of the single elastic constants (C11, C12 and C44) and polycrystalline elastic constants
(B, G, E and �) for SnBSc3 and PbBSc3 compounds using GGA-WC.

C11 C12 C44 B G E �

SnBSc3 ˛ 6.535 2.268 1.241 3.690 1.556 4.342 2.653
ˇ −4.601 0.5 −0.684 −1.20 −1.326 −3.39 −0.317

PbBSc3 ˛ 6.807 2.182 1.312 3.724 1.659 4.547 2.618
ˇ −3.605 0.333 −0.569 −0.979 −1.04 −2.682 −0.286

Table 5
Elastic waves velocities (in m/s) for different propagation directions for SnBSc3 and PbBSc3 compounds.

�1 0 0
L

�1 0 0
T

�1 1 0
L

�1 1 0
T1 �1 1 0

T2 �1 1 1
L

�1 1 1
T

SnBSc3 GGA 6786 3770 6360 3770 4452 6211 4237
6427
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LDA 6911 3744

PbBSc3 GGA 5788 3234
LDA 5874 3238

alculated elastic wave velocities in [1 0 0], [1 1 0] and [1 1 1] direc-
ions for SnBSc3 and PbBSc3 at zero pressure are presented in
able 5.

.3.2. Elastic parameters and related properties for the
olycrystalline SnBSc3 and PbBSc3

In a polycrystalline material, the monocrystalline grains are
andomly oriented. On a large scale, such materials can be con-
idered to be quasi-isotropic or isotropic in a statistical sense. An
sotropic system is completely described by the bulk modulus B
nd shear modulus G; these are obtained by a special averaging of
he anisotropic elastic constants [45]. There are different schemes
f such averaging. For example, one can site the Voigt and Reuss
veraging method. The Voigt averaging method is based on the
ssumption of a uniform strain and the Reuss method is based on
he assumption of a homogeneous stress. The former is formulated
sing the elastic constants Cij and the later using the elastic com-
liances Sij. Within the Voigt approach, the general expressions for
he bulk and shear moduli are [46,47]

V = [(C11 + C22 + C33) + 2(C12 + C13 + C23)]
9

(6)

V = [(C11 + C22 + C33) − (C12 + C13 + C23) + 3(C44 + C55 + C66)]
15

(7)

The corresponding expressions within the Reuss approach are

R = [(S11 + S22 + S33) + 2(S12 + S13 + S23)]−1 (8)

R = 15[4(S11 + S22 + S33) − 4(S12 + S13 + S23) + 3(S44 + S55 + S66)]

For the cubic crystals, C11 = C22 = C33, C12 = C12 = C23,
44 = C55 = C66, and S11 = S22 = S33, S12 = S12 = S23, S44 = S55 = S66.

Using these relations, for the Voigt and Reuss bounds we obtain

V = (C11 + 2C12)
3

(10)

V = (C11 − C12 + 3C44)
5

(11)

nd

R = [3(S11 + 2S12)]−1 (12)

R = 5(4S11 − 4S12 + 3S44)−1 (13)

Since the cubic elastic compliances may be expressed in terms

f the elastic constants as:

11 + 2S12 = (C11 + 2C12)−1

11 − S12 = (C11 − C12)−1 (14)
3744 4524 6258 4280

3234 3791 5318 3615
3238 3838 5370 3649

S44 = (C44)−1

The Reuss bounds reduce to BR = BV and

GR = 5(C11 − C12)C44

4C44 + 3(C11 − C12)
(15)

Hill [48–51] has showed that the Voigt and Reuss bounds are rig-
orous upper and lower bounds. The average bulk and shear moduli
can be estimated from these bounds, e.g., as BH = (BR + BV)/2 and
GH = (GR + GV)/2.

Alternatively, instead of the arithmetic average one might pre-
fer to use the geometric or harmonic means. In weakly anisotropic
materials, of course, all these averages lead to similar mean B and
G.

The Young’s modulus, E, and Poisson’s ratio, �, are connected to
B and G by the relations

E = 9BG

3B + G
and � = 3B − 2G

2(3B + G)
(16)

The calculated isotropic elastic moduli, namely bulk modulus B,
shear modulus G, Young’s modulus E, Poisson’s ratio � and Lamé’s
coefficient �, for SnBSc3 and PbBSc3 are given in Table 3. It is found
that B, G, E and � values in SnBSc3 are slightly higher than those of
PbBSc3, which confirm that SnBSc3 is slightly harder than PbBSc3.

Poisson’s ratio � can formally take values between −1 and 0.5,
which corresponds, respectively, to the lower bound where the
material does not change its shape and to the upper bound when
the volume remains unchanged. For systems with predominantly
central interatomic interactions (i.e., ionic crystals), the value of �
is usually close to 0.25 [52]. The � = 0.25 and 0.5 are the lower limit
and the upper limit for central force solids, respectively. This ratio
decreases as non-central effects become more important. For cova-
lent materials � are small (� = 0.1). In our case, the values of � are
equal to 0.176 (0.185) and 0.175 (0.182) for SnBSc3 and PbBSc3,
respectively, from the GGA (LDA) calculation, which means that
SnBSc3 and PbBSc3 are affected by a certain amount of non-central
forces contributions, indicating a mixed covalent–ionic bonding in
these two compounds.

Based on Pugh suggestion [53], which proposes the ratio
between the bulk modulus and shear moduli (B/G = 1.75) as a cri-
terion to separate the ductile and brittle behaviour of materials

(where for B/G > 1.75, the material behaves in ductile manner; oth-
erwise, the material behaves in a brittle manner) we have conclude
that the two compounds SnBSc3 and PbBSc3 may be classified as
brittle materials. The B/G ratio is found to be equal to 1.21 (1.25)
and 1.21 (1.24) for SnBSc3 and PbBSc3, respectively, using the GGA
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Table 6
Density � (in g/cm3), longitudinal, transverse and average sound velocities (vl , vt

and vm , respectively, in m/s) (calculated from polycrystalline elastic moduli) and
the Debye temperatures (�D in K) (calculated from the average sound velocity) for
SnBSc3 and PbBSc3 compounds.

Species � vl vt vm �D

SnBSc3 GGA 4.47 6425.0 4030.3 4438.0 489.9

[
[

[
[

[
[

[

[

[

ig. 6. Longitudinal and transverse sound velocities (�L and �H, respectively) and
ebye temperature (�D) versus pressure for the SnBSc3 and PbBSc3 compounds. The

olid lines are least-squares second-order polynomial fits of the data points.

LDA). The more deleterious consequence of brittleness is the sensi-
ivity for thermal shocks, as the material cannot efficiently dissipate
hermal stress via plastic deformations. Thus, a brittle solid can only
e subjected to limited thermal shocks before its strength drops
ramatically.

Furthermore, we have evaluated the effect of the pressure on
he isotropic elastic moduli; B, G, E and � for SnBSc3 and PbBSc3 as
t is depicted in Fig. 5. The pressure derivatives of these constants
re listed in Table 4. All these parameters increase with increasing
ressure, indicating that their hardness increases with pressure.

One of the most important parameter that determines the ther-
al characteristics of materials is the Debye temperature �D. As
rule of thumb, a higher �D implies a higher associated thermal

onductivity and melting temperature. The knowledge of such a
umerical figure is essential for developing and manufacturing
lectronic devices [42,52]. The Debye temperature (�D) of the stud-
ed compounds is estimated using the elastic parameters or, more
recisely, from the average sound velocity �m in term of the follow-

ng equation [54] (Fig. 6):

D = h

kB

[
3n

4�a

NA�

M

]1/3
vm (17)

here h is the Planck’s constant, kB is the Boltzmann’s constant, n is
he number of atoms per molecule, NA is the Avogadro’s number, �
s the density, M is the molecular weight and vm is the average sound
elocity. The average sound velocity can be accurately calculated
rom the elastic constant tensor or using an approximate formula

m =
[

1
3

(
2

v3
t

+ 1

v3
l

)]−1/3

(18)

here �l and �t are the longitudinal and transverse sound veloc-
ties, respectively. These two parameters can be estimated from
he shear modulus G and the bulk modulus B by using the Navier’s
quation as follow [54]:

l =
(

3B + 4G
)1/2

and �t =
(

G
)1/2

(19)

3� �

Results for the density �, sound velocities (vl, vt and vm) and
ebye temperature �D for the SnBSc3 and PbBSc3 compounds are
iven in Table 6.

[
[

[

LDA 4.69 6498.4 4039.8 4452.8 499.7

PbBSc3 GGA 5.88 5493.5 3446.9 3795.5 417.1
LDA 6.12 5556.9 3466.5 3819.5 425.2

4. Conclusion

To summarise, for the first time, we have studied the structural,
electronic and elastic properties of the cubic anti-perovsite borides
Sc-based SnBSc3 and PbBSc3 by using a pseudo-potential plane-
wave approach based on the density functional theory within the
generalized gradient approximation and the local density approx-
imation. The calculated equilibrium lattice constants agree well
with the available experimental data; validating the theoretical
method used in this work. The band structures show that the two
studied materials are electrical conductors. Mulliken charge popu-
lation analysis reveals that the bonding in SnBSc3 and PbBSc3 is
a mixture of covalent and ionic character. All calculated elastic
parameters are found to have quadratic dependence with pressure.
The bulk modulus derived from the single elastic constants Cij has
nearly the same value as the one estimated from the EOS-fitting;
this might be an estimate of the reliability and accuracy of the pre-
dicted elastic constants for SnBSc3 and PbBSc3 compounds. SnBSc3
and PbBSc3 show an elastic anisotropy. Using the empirical rule of
Pugh, we have found that the two compounds can be classified as
brittle materials.
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